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A B S T R A C T   

Advances in machine and deep learning techniques provide a novel approach in understanding complex patterns 
within large datasets, leading to an implementation of personalized medicine approaches to support clinical 
decision making. Results from recent clinical trials (TENT-A1 and TENT-A2 studies; clinicaltrials.gov: 
NCT02669069 and NCT03530306) support that a novel bimodal neuromodulation approach could be a break
through treatment for patients with tinnitus, which adversely affects 10–15 % of the population. Given the 
heterogeneity of symptoms, it is important to identify whether treatment has an optimal effect on specific 
subgroups of tinnitus patients. The current study is a first look at the feasibility of using deep learning modelling 
on patient reported data to predict treatment outcomes in individuals with tinnitus, and highlights what features 
are most beneficial for clinical decision making.   

1. Introduction 

Recent advancement in machine learning techniques have served as 
a catalyst in understanding complex patterns within large datasets, 
leading to a rise in implementation of personalized medicine approaches 
to support clinical decision making [1–4]. General machine and deep 
learning models are data-driven computational approaches that help 
identify complex patterns, hidden correlations, and non-linear re
lationships in datasets for which traditional exploratory and inferential 
statistical analyses struggle to accurately measure [2,3]. Deep learning 
approaches, inspired by the biological neural communication networks 
in the brain, can extract and process information from given data to 
make individual predictions on new data [2,3]. Furthermore, these ap
proaches can provide a better understanding to complex heterogeneous 
disorders, encompassing multi-factorial conditions through the stratifi
cation of patients into subgroups with similar features. 

Personalized medicine has leveraged artificially intelligent algo
rithms in drug development, disease characteristics, and therapeutic 
effects for several diseases such as diabetes, cancer, heart disease, 
chronic inflammatory disease, and psychiatric disease [5–12]. Recent 

studies have highlighted personalized medicine towards tinnitus man
agement, in which regression or classification modelling could improve 
clinical decision making [13,14]. Tinnitus is a highly heterogeneous 
disorder, in which various components are reported amongst patients 
including the etiology, phenotype, and comorbidities [15]. The heter
ogenous nature of the disorder likely affects treatment options and 
response. Machine learning approaches such as deep learning gives re
searchers the opportunity to improve clinical diagnostic, prognostic, and 
treatment decision making through individualized, tailored predictions 
[5,6,9,11,16,17]. 

In the current study, we sought to test the feasibility of using deep 
learning to predict tinnitus patient outcomes following treatment. To do 
so, we used data from two recent clinical trials (TENT-A1 study, clin
icaltrials.gov: NCT02669069; TENT-A2 study, clinicaltrials.gov: 
NCT03530306) [18,19] to train our deep neural network model to 
predict tinnitus severity during or after bimodal stimulation via a novel 
neuromodulation approach to treatment. We generated an initial deep 
learning model to predict interim Tinnitus Handicap Inventory (THI) 
scores after 6 weeks of treatment using various features within the 
database [18,19] representing patient characteristics, tinnitus 
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characteristics, hearing loss, and psychoacoustic measures. As a 
benchmark, we compared the performance of our deep learning model 
to a range of commonly utilized machine learning algorithms. 

Various tinnitus related measures served as input features for the 
models however only some features may be informative in predicting 
tinnitus severity. Moreover, some features may even be distracting in 
making predictions. Feature reduction is a common tool to optimize 
deep learning models and reduce model complexity, in which only those 
features deemed most relevant are included as input whilst those that 
are not important or redundant are excluded. Knowing which features 
are critical to accurate decision making can optimize the patient and 
clinician’s time and resources they will have to collect. To determine if 
feature reduction methods impact model performance, we compared 
model performance when feature reduction was and was not applied. 
We then further test the clinical applicability of the model, to determine 
if we can predict the final THI score, by classifying whether or not 
participants responded to treatment. Together, these findings will test 
the feasibility and establish the initial framework of using deep learning 
to predict tinnitus patient outcomes following treatment. 

2. Methods 

2.1. Participants 

Data used for training and testing our initial deep learning models 
were obtained from two previous studies [18,19]. The TENT-A1 [18] 
and TENT-A2 [19] were randomized, double-blind, parallel-arm, clin
ical trials with a 12 week treatment period and a 12 month follow-up 
period investigating the safety and efficacy of various bimodal audi
tory and somatosensory stimulation treatments for tinnitus. Compre
hensive description of the TENT-A1 [18] and A2 [19] cohorts and the 
intervention designs have been previously described. Briefly, in 
TENT-A1, 326 tinnitus participants enrolled at two separate sites 
(Dublin, Ireland and Regensburg, Germany) were randomized to one of 
three treatment arms. In TENT-A2, 191 tinnitus participants enrolled at 
a single-site in Dublin, Ireland were randomized to one of four treatment 
arms. Sixty-six participants from TENT-A1 and 19 participants from 
TENT-A2 were excluded from analyses due to no interim Tinnitus 
Handicap Inventory (THI) scores, final THI scores, or treatment hours, 
resulting in a total of 432 participants (i.e., TENT A-1 n = 260, TENT-A2 
n = 172). 

2.2. Variable selection 

Together, our datasets included 25 variables: input variables repre
senting patient characteristics, tinnitus characteristics, hearing loss, and 
psychoacoustic measures at baseline, and output variables representing 
tinnitus severity following treatment. The following discussion sum
maries these variables and describes their characteristics.  

1. Patient Characteristics 

Age and sex were included as input variables to reflect patient de
mographics. As part of the eligibility criteria, only participants between 
the ages of 18–70 years were recruited in TENT-A1 and -A2.  

2. Tinnitus Characteristics 

Tinnitus severity, loudness, annoyance, duration, location and 
tinnitus type were utilized to characterize the patient’s tinnitus. Severity 
of tinnitus was assessed using the 25-item Tinnitus Handicap Inventory 
(THI) [20] at three time points. Responses were rated as ‘Yes’ (4-points), 
‘Sometimes’ (2-points) or ‘No’ (0-points). Baseline THI was the average 
THI score at screening and enrolment. Interim THI was assessed 6 weeks 
after treatment, and final THI was assessed 12 weeks after treatment. 
Participants were also asked to describe the loudness and annoyance of 

their tinnitus by respectively rating on a 10-point visual analogue scale 
(VAS) (0, ‘not loud/annoyed at all’ and 10, ‘extremely loud/annoyed’) 
to the questions ‘Can you rate the loudness of your tinnitus on a scale of 
0–10 right now’ and ‘Can you rate the annoyance of your tinnitus on a 
scale of 0–10 right now’. The duration (years) and location of tinnitus 
was also assessed. In TENT-A1, participants had experienced tinnitus for 
more than 3 months and less than 5 years. In TENT-A2, the upper 
boundary for tinnitus duration during recruitment was increased to 10 
years [21,22]. Tinnitus location was categorically described as either in 
the left ear, right ear, both ears but left is worse, and both ears but right 
is worse. Tinnitus type was categorically described as pure tone, hissing, 
constant noise, or a combination of. Participants also described their 
tinnitus as either constant or fluctuating.  

3. Hearing Loss 

The variable Hearing Loss (HL) was derived from an average dbHL in 
bands 0.25–8 kHz in both the left and right ears. The degree of High 
Frequency Hearing Loss (HF-HL) was generated from an average dbHL 
in the bands from 1 to 8 kHz in both ears. In both TENT-A1 and -A2, 
participants with conductive hearing loss (i.e., >40 dbHL in at least one 
measurement frequency in the range of 0.25–1.00 kHz or has >80 dBHL 
in at least one measurement frequency in the range of 2.0–8.0 kHz) were 
excluded [21,22]. Hearing loss asymmetry was calculated by subtract
ing total hearing loss on the right ear from the left ear.  

4. Psychoacoustic Measures 

Loudness Discomfort Level (LDL), Minimal Masking Level (MML) 
dBSL, and Tinnitus Loudness Matching (TLM) dBSL were utilized to 
characterize psychoacoustic measures. MML dBSL was used to estimate 
the lowest level of broadband noise needed to minimally mask the 
participant’s tinnitus. TLM dBSL was utilized to assess the stimulus that 
is equal in loudness to the participant’s tinnitus. Loudness Discomfort 
Level (LDL) assessed auditory hypersentivity. LDL dBSL was generated 
using the LDL averaged at 500 Hz in the right and left ears. Participants 
in both TENT-A1 and TENT-A2 were recruited to have a wide-band noise 
MML measurement between 20- and 80-dB hearing level. A detailed 
description of psychoacoustic assessment methods can be found in 
previous publications [21,22]. 

2.3. Data pre-processing 

Categorical variables were encoded into numerical labels for each 
category. Baseline and interim THI scores were categorized into 5 
groups: slight (0–16 points), mild (18–36 points), moderate (38–56), 
severe (58–76), and catastrophic (78–100) [23]. All input values were 
scaled from 0 to 1 using a min-max scaling technique to normalize the 
range of input data. The dataset was randomly split into training, vali
dation, and testing sets, in which 80 % of the data was used for training 
(64 %) and validation (16 %) of the model, and 20 % of the data was 
used to test the model. 

In our regression-based models, either interim or final THI scores 
were used as primary outcomes. In our classification-based models, 
change in THI was considered the primary outcome, calculated by 
subtracting the baseline THI score from the final THI score. If the change 
in THI decreased by 7 points or more [24], subjects were considered a 
significant responder to treatment (n = 338). If the change in THI was 
less than 7 points [24], subjects were considered a non-responder (n =
94). To address class imbalance, Synthetic Minority Over-Sampling 
TEchnique (SMOTE) to generate synthetic data for our training data
set. SMOTE uses the k-nearest neighbour algorithm to oversample the 
minority class, and thereby produces synthetic samples of 
non-responder data to balance the dataset [25]. 
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2.4. Model building and training 

We trained four sequential deep learning models, and five machine 
learning models to benchmark our deep learning models (Table 1). Deep 
learning models were implemented using Keras with a TensorFlow 
backend [26] and machine learning models were implemented with 
Scikit-Learn. Model 1 and the corresponding benchmark models aimed 
to predict interim THI score, and utilized 22 input variables including 
sex, age, tinnitus duration, tinnitus location, tinnitus type, THI, LDL 
(right ear, left ear, and worst case), VAS for annoyance and loudness, 
MML dBSL, TLM dBSL, high frequency hearing loss (left ear and right 
ear), total hearing loss (left ear and right ear), and hearing loss asym
metry. We compared performance to five machine learning models: 
ElasticNet, a linear Support Vector Machine (SVM), Random Forest, 
Decision Tree, and a Dummy Regression. For our Dummy Regression, we 
utilized the DummyRegressor function in SciKit-Learn, which is useful as 
a simple baseline to compare with other regressors. 

We used SHAP (Shapley Additive Explanations) as a feature reduc
tion method, in which input features were ranked by the highest Shapley 
values which evaluate an importance value for a particular prediction 
[27]. We then reduced the number of input variables to include the 5 
features with the highest SHAP values to simplify the model. Model 2 
utilized baseline THI group, VAS for annoyance, MML dBSL, tinnitus 
location, and high frequency hearing loss (left side) as input variables to 
predict interim THI score. Model 3 aimed to predict final THI score, and 
utilized baseline THI group, interim THI group, VAS for annoyance, 
MML dBSL, tinnitus location, and high frequency hearing loss (left side) 
as input variables. Moreover, Model 2 aimed to predict short term pre
dictions (i.e., interim THI) whereas Model 3 aimed to predict long-term 
predictions (i.e., final THI). Using these same input variables as Model 3, 
Model 4 aimed to classify between responders and non-responders to 
treatment. 

Each regression neural network (Models 1–3) consisted of two hid
den layers with a width of 50 nodes and 25 nodes, and an output layer of 
1 node. We applied a rectified linear (ReLU) activation function on the 
hidden layers, a linear activation function on the output layer, and used 
mean squared error as the loss function. Our classification model (Model 
4) consisted of two hidden layers with a width of 50 nodes and 25 nodes, 
and an output layer of 2 nodes. We applied a rectified linear (ReLU) 
activation function on the hidden layers, a sigmoid activation function 
on the output layer, and sparse categorical cross entropy as the loss 
function. All models used Adam optimization with 0.001 for learning 
rate. Model training consisted of 100 epochs and a batch size of 8. We 
performed a repeated random sub-sampling cross validation to validate 
model performance, in which model performance was evaluated over 50 
iterations. Here, the database was randomly split into a training, vali
dation, and testing dataset for every iteration. 

2.5. Model evaluation 

Model evaluation and analysis was performed using Python. We first 
evaluated deep leaning model performance to 5 machine learning 
models: ElasticNet, SVM, Random Forest. Decision Tree, and a Dummy 

Regressor model as a benchmark [28,29]. The Dummy Regressor always 
predict the mean value of the training data regardless of the input given, 
acting as reference model trained deliberately to aim for the centre of 
the data and not learn the wider distribution. Therefore, if a model 
performs similarly to the Dummy Regressor, that would indicate the 
model hasn’t learned the data distribution or the data is very tightly 
distributed. Regression models (Models 1, 2, and 3) were evaluated 
using R2, mean squared error (MSE), and mean absolute error (MAE) on 
the test dataset. Feature importance was interpreted using DeepSHAP to 
approximate mean absolute SHAP values, and individual feature SHAP 
values for each prediction [27,30]. 

The classification model (Model 4) was evaluated using prediction 
accuracy, receiver operating statistic (ROC), precision, and recall. The 
test set prediction accuracies measure the model’s ability to accurately 
classify data in the test dataset following training, illustrating the 
model’s generalizability to data it has not seen yet. Accuracies were 
calculated as the percentage of correct predictions (true positives + true 
negatives divided by the total sum of predictions). The ROC curve plots 
the true positive rate (TPR, i.e., recall) to the false positive rate (FPR) at 
various thresholds [31]. Area under the curve was calculated for the 
ROC curve (i.e., AUC-ROC), a commonly reported performance metric 
representing the model’s capability of distinguishing between classes 
[32]. Here, we also report the area under the curve for the 
Precision-Recall curve (i.e., AUC-PRC), which is a more suitable metric 
for imbalanced datasets compared to ROC [33]. The Precision-Recall 
curve plots the TPR (i.e., recall) to positive predictive values (i.e., pre
cision) for different probability thresholds. 

We performed a repeated, random sub-sampling, cross validation to 
validate model performance over 50 iterations. All measures were 
recorded for each iteration. Graphical representations illustrate the data 
distribution over the course of 50 iterations. Mean and standard devia
tion were also reported for each measure, averaging the measures across 
50 iterations of each model, as seen in Table 2. 

3. Results 

We first investigated feasibility of using deep learning to predict 
tinnitus severity after 6 weeks of treatment. Here, we used our 22 
baseline variables to train the models to predict interim THI score. Our 
initial deep learning model, Model 1, outperformed the machine 
learning models, indicated by an increase in variance explained (R2), 
and decreased MSE and MAE compared to the other models (Fig. 1, 
Model 1: R2 = 0.43, MSE = 161.12, MAE = 9.99). As each of the models 
were evaluated following a repeated, random sub-sampling, cross vali
dation, the box-and-whisker diagrams in Fig. 1 illustrate how each 
model performed across all the repetitions for the relevant metric. 

Various baseline variables representing patient characteristics, 
tinnitus characteristics, hearing loss, and psychoacoustic measures were 
used to train the models, however not all features may be important for 
predicting tinnitus severity. We used SHAP as a data-driven feature 
reduction method, in which feature importance was determined post- 
hoc for our deep learning model. Baseline THI category was identified 
as most important, with an average absolute SHAP value of 8.09 (Fig. 2). 

Table 1 
Description of deep learning model input and outputs. Benchmark machine learning models utilized the same input and output as Model 1.  

Label Type Input Output 

DL Model 
1 

Regression 22 variables: sex, age, tinnitus duration, tinnitus location, tinnitus type (1–5), baseline THI subgroup, LDL (right ear, left 
ear, and worst case), VAS for annoyance and loudness, MML dBSL, TLM dBSL, high frequency hearing loss (left ear and right 
ear), total hearing loss (left ear and right ear), and hearing loss asymmetry 

Interim THI score 

DL Model 
2 

Regression 5 variables: Baseline THI subgroup, VAS for annoyance, MML dBSL, tinnitus location, high frequency hearing loss (left) Interim THI score 

DL Model 
3 

Regression 6 variables: Baseline THI subgroup, Interim THI subgroup, VAS for annoyance, MML dBSL, tinnitus location, high frequency 
hearing loss (left) 

Final THI score 

DL Model 
4 

Classification 6 variables: Baseline THI subgroup, Interim THI subgroup, VAS for annoyance, MML dBSL, tinnitus location, high frequency 
hearing loss (left) 

Responder or Non- 
responder  
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In addition to baseline THI, VAS for annoyance, MML dBSL, tinnitus 
location, and high frequency hearing loss (left side) emerged as the top 5 
important features to predict interim THI score. These results suggest 
that baseline tinnitus severity is highly influential in predicting tinnitus 
severity following 6 weeks of treatment. Feature importance for indi
vidual predictions of Model 1 is visualized in Fig. 2. High baseline THI 
group (i.e., severe and catastrophic) corresponds with higher SHAP 
values. In other words, high baseline THI group corresponds with a 

higher predicted interim THI score. 
Knowing which features are critical to accurate decision making can 

optimize the patient and clinician’s time and resources they will have to 
collect. To determine if feature reduction methods impact model per
formance, we compared model performance after only including the top 
5 important features. Feature reduction increased variance explained 
(R2), and decreased MSE and MAE (Fig. 3, Model 2: R2 = 0.45, MSE =
156.48, MAE = 9.83) compared to our original model with 22 features 
(Model 1). 

We next wanted to test the feasibility of predicting tinnitus severity 
following 12 weeks of treatment if we knew the subject’s interim score 
(Model 3). We therefore used the same input features in addition to 
interim THI category (Table 1). Model 3 outperformed the other 
regression neural networks, as indicated by a higher variance explained 
and decreased MSE and MAE compared to the other models (Fig. 3, 
Model 3: R2 = 0.52, MSE = 128.99, MAE = 8.65). Interim THI category 
was identified as the most important feature with an average absolute 
SHAP value of 9.25, followed by baseline THI category with an average 
absolute SHAP value of 1.59. Feature importance for individual pre
dictions of Model 3 is visualized in Fig. 4. High interim THI group (i.e., 
severe and catastrophic) again corresponds with a higher SHAP values. 
This may suggest that a high interim THI score may indicate a higher 
final THI value. Exemplar model predictions are visualized in Fig. 5, in 
which there are clear distinctions between interim THI category and the 
predicted final THI score (Fig. 5). 

We then further test the clinical applicability of the model, in which 
we sought to determine if we can train a model to classify participants 
into responder and non-responders to 12 weeks of treatment (Model 4). 
We used the same input variables as Model 3 to train Model 4, to predict 
pre-determined subgroups in which subjects were considered a signifi
cant responder to treatment if their final THI score decreased by 7 points 
or more from their baseline THI score. Model 4 was able to classify re
sponders and non-responders with an average accuracy of 72 %, AUC- 
PRC of 0.86, AUC-ROC of 0.66, and f1 of 0.81. To further understand 
the interpretability of Model 4, we again use SHAP as a method to 
determine feature importance for individual predictions of each class, 
visualized in Fig. 6. Low interim THI groups (i.e., slight or mild) and 
high baseline THI groups (i.e., severe or catastrophic) have higher SHAP 
values corresponding to our responder class. Moreover, high interim THI 
groups (i.e., severe or catastrophic) and low baseline THI groups (i.e., 
mild) have higher SHAP values corresponding to our non-responder 
class. 

4. Discussion 

The advancement of machine and deep learning models has led to a 
rise in implementation of personalized medicine approaches, in which 

Table 2 
Model performance metrics for our Regression and Classification models. The table outlines the model name, the number of input variables (see Table 1 for variable 
names), the output variable, and the corresponding performance metrics for regression or classification models. Performance metrics are presented as mean ± standard 
deviation for 50 iterations.  

Regression Models 

Model Input (# vars) Output R2 MSE MAE 

ElasticNet 22 Interim THI score 0.07 ± 0.02 269.45 ± 35.24 13.02 ± 0.97 
SVC - R 22 Interim THI score − 0.07 ± 0.19 307.54 ± 47.65 13.79 ± 1.09 
Random Forest 22 Interim THI score 0.08 ± 0.16 264.83 ± 47.35 12.71 ± 1.12 
Decision Tree 22 Interim THI score − 0.05 ± 0.20 302.88 ± 59.59 13.65 ± 1.32 
Dummy 22 Interim THI score − 0.01 ± 0.02 294.04 ± 37.03 13.64 ± 0.98 
DL Model 1 22 Interim THI score 0.43 ± 0.09 161.12 ± 24.11 9.99 ± 0.75 
DL Model 2 5 Interim THI score 0.45 ± 0.08 156.48 ± 20.30 9.83 ± 0.71 
DL Model 3 6 Final THI score 0.52 ± 0.97 128.99 ± 25.32 8.65 ± 0.77  

Classification Model 

Group Input (# vars) Output Accuracy AUC-PRC AUC-ROC F1 

DL model 4 6 Responder or Non-responder 71.71 ± 4.49 % 0.86 ± 0.05 0.64 ± 0.07 0.82 ± 0.03  

Fig. 1. Deep learning model outperforms machine learning algorithms to 
predict interim THI. We compared model performance, quantified by variance 
explained (R2), mean squared error (MSE), and mean absolute error (MAE), 
across 5 machine learning models and one deep learning model. Deep learning 
Model 1 has greater R2, and reduced MSE and MAE compared to machine 
learning models ElasticNet (ENet), linear Support Vector Machine (SVM), 
Random Forest (RF), Decision Tree (DT), and a Dummy Regression model 
(Dummy). Box plots illustrate the data distribution over the course of 
50 iterations. 
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computational techniques support clinical decision making to improve 
patient outcomes [1,2,4]. A supervised deep learning approach can 
extract and process information from given data to make individual 
predictions on new data [2]. In the current study, we tested the feasi
bility of using deep learning to predict tinnitus patient outcomes 
following treatment. We illustrated that deep learning models outper
form general machine learning models, and that feature reduction 
slightly improves deep learning performance. Furthermore, we conclude 
that baseline and interim THI group emerge as the top features across 
both regression and classification deep learning models. 

Our results suggest that interim THI could be a primary feature to
wards responder or non-responder classification of treatment. Further
more, this may suggest that response to 6 weeks of treatment could be 
indicative to response to 12 weeks of treatment. Our feature importance 
methods highlighted the top features needed to predict treatment 
response, including THI, VAS for annoyance, MML dBSL, tinnitus loca
tion and high frequency hearing loss, in which these features are the 
most beneficial for AI based decision-making with the given data. While 
these results hold great promise for clinical applicability, further 
research is needed to validate prior to real world implementation. 

Given that our findings put forth several measures of tinnitus 
including THI, annoyance, locations, loudness, and hearing loss as 
important features for determining treatment response, there is 
reasonable basis to postulate how the implementation of this, or a 
similar model, may look in a clinical setting. Our belief is that models 
developed to predict treatment response will assist clinicians in deciding 
on treatment approaches with patients. In such a scenario, clinicians can 
use gathered information from a patient’s appointments, and supply 
information to a model such those described here. This model will, using 

previously trained data, provide a prediction as to whether or not the 
patient in question would respond to the proposed treatment. In one 
theoretical scenario, a classification model, such as the DL model 4 we 
produce here, could be implemented as part of a tinnitus patient 
appointment where the approach of treatment is being discussed. In 
either a web-based or internally-supported application, the patient’s 
demographic and tinnitus information will be provided by the patient, 
and suggested treatment inputted by the clinician. The application will 
then return a prediction as to whether the patient is likely to respond to 
the suggested treatment, allowing the clinician to then decide whether 
or not to pursue this treatment approach, or consider an alternative. 
Indeed, while the focus of this study was to consider the treatment 
response prediction of a specific treatment (i.e., bimodal stimulation), as 
stimulation parameters are further explored, a future model may not 
only predict whether a patient will respond, but may also suggest 
alternative treatment approaches based on similar patient profiles that 
responded to different treatment approaches, and indeed similar 
methods have been considered and tested in other disorders [41]. 

Fluency with machine learning may also create a barrier to the 
implementation of AI-guided clinical decision making, and indeed it is 
impractical that all clinicians wishing to utilize a treatment decision- 
making aid such as a classification model should rigorously study the 
history of machine learning in a clinical setting. Thus, the interpretation 
of the model, and the mechanism(s) by which it came to the decision, are 
critical factors when considering implementing AI. For example, when a 
model makes a classification decision (e.g., Responder or Non- 
responder), this decision is most often made using a probability. Thus, 
an effective and transparent model may provide the probability of the 
patient responding, as opposed to a simple classification category. This 

Fig. 2. Feature importance for Model 1. (A) Average top features across 50 iterations. Baseline THI group, VAS (annoyance), MML dbsl, tinnitus location, and high 
frequency hearing loss (left) are the top 5 features. (B) Summary plot of all predictions across 50 model iterations combing feature importance with feature effects. 
Each point corresponds to the Shapley value (x-axis) for a feature within a given instance, and the color of the point represents the feature value from low to high. 
Points are jittered in the y-axis. Features are ordered according to their importance. 
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will also allow clinicians to weight the input of the model. For example, 
both a 90 % and 54 % ‘Responder’ prediction output will be classed as 
‘Responder’, although one is notably more extreme than the other. 
Furthermore, SHAP values in the models above indicate which features 
the model is using the most to produce predictions, and thus these 
‘inner-workings’ may improve the clinicians understanding of how the 
model is coming to the conclusion. For example, if a model such as ours 
is rating the baseline THI score as an important feature, and the clinician 

is unable to provide this value, the ultimate treatment response pre
diction might be considered unreliable compared to a prediction made 
using baseline THI. Fundamental understanding of these aspects, which 
can easily be integrated into applications using warning systems (e.g., 
warning the clinician that they are missing key clinical information) or 
user manuals, improving the transparency of the model while also 
informing the clinician of how the decision is being made. Ultimately, 
computer-based applications which reduce the complexity of a deep 
learning model to a simple input-output interface, and with the addition 
of necessary staff training and warning systems, are low-impact and 
implementable addition to clinical appointments, and can likely be in
tegrated into existing workflows without significant time or resource 
allocation with proper interface development and piloting. The results of 
this study have also arguably given sufficient support for its use, such 
that the next steps will be to implement a piloting of a model in a tinnitus 
clinic where clinicians can engage with, and review, the decisions of the 

Fig. 3. Model 3 outperforms the other deep learning regression models. 
We compared model performance, quantified by variance explained (R2), mean 
squared error (MSE), and mean absolute error (MAE), across 3 deep learning 
regression models. Model 3 has greater R2, and reduced MSE and MAE 
compared to Models 1 and 2. Box plots illustrate the data distribution over the 
course of 50 iterations. 

Fig. 4. Feature importance for Model 3. (A) Average top features across 50 iterations for Model 3. Interim THI group and Baseline THI group are the most 
important features. (B) Summary plot of all predictions across 50 model iterations combing feature importance with feature effects. Each point corresponds to the 
Shapley value (x-axis) for a feature within a given instance, and the color of the point represents the feature value from low to high. Points are jittered in the y-axis. 
Features are ordered according to their importance. 

Fig. 5. Example of predicted final THI vs true THI in a single iteration of 
Model 3. Individual points are the predicted final THI score, with their true 
final THI values on the x-axis. The color of the points correspond to the THI 
subgroup of the individual at the interim timepoint, 6 weeks after starting 
treatment. Lines represent the kernel density estimate to visualize the distri
bution of points. Predictions of final THI score are largely dependent on interim 
THI group. 
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model in a real-world clinical setting. 
Limitations within this study merit consideration. Clinical features of 

individuals with tinnitus vary considerably, which exacerbates variable 
response to treatments [34]. Inclusion and exclusion criteria of studies 
can reduce heterogeneity by excluding specific subgroups of tinnitus. 
However, reducing the heterogeneity can limit the input variables, 
thereby limiting the scope of the model. Additionally, it’s possible that 
factors outside of our measures may be more insightful or indicative of a 
person’s likelihood to respond (or not-respond) to this treatment. 
Furthermore, our output variable, THI score, predominantly assesses the 
emotional and functional impact of tinnitus, rather than the perception 
of tinnitus. Whether these measures are best attribute to use to evaluate 
treatment efficacy is yet to be understood. Recently, a study utilized EEG 
data from tinnitus patients to predict treatment response with a 99 % 
accuracy, highlighting the robustness of EEG signals as a predictor [17]. 
However, collecting and analysing EEG data is time consuming, and 
using a tailored questionnaire to predict patient outcomes could reduce 
time spent in the clinic, quickly informing patients regarding the prob
ability of treatment success. 

Another challenge within personalized medicine is the lack in stan
dardized reporting of model performance [35]. A wide range of per
formance metrics are applied to determine model classification 
performance including accuracy, error rate, area under the ROC curve 
[2,36,37]. While ROC is the most popular to report for binary classifi
cation, studies suggest Precision-Recall curve is a better alternative for 
imbalanced datasets [36]. The Precision-Recall curve is ideal for 
imbalanced datasets in which the positive class is the minority, as it 

evaluates the fraction of true positives among positive predictions. In the 
current study, we observe an imbalance in which the positive class, the 
responders, is the majority, and the negative class, the non-responders, 
are in the minority. This can likely be attributed to the fact that in
dividuals who perceive they are not responding to treatment may be 
more likely drop out of the study [38]. Therefore, Precision-Recall curve 
may not be the best measure to evaluate model performance. Currently, 
there is no single measure that can evaluate all the desirable components 
or accurately portray the clinical applicability of a model [36,39]. In 
attempt to address this, several measurements are reported instead to 
summarize the performance [39,40]. We also recognize that in order to 
test model generalizability, the model would ideally be tested on an 
external dataset such that the performance can be gauged using a variety 
of data. While this study relied on, to our knowledge, the only available 
clinical data investigating the effect of bimodal stimulation on tinnitus 
improvement, future studies or alternate implementations of deep 
learning models for predicting tinnitus treatment outcomes would 
benefit from validation with external datasets. This may also include the 
application of the model to different populations, ages, and treatment 
methods. 

Through our analyses, we establish the initial framework for future 
development of a robust model to identify subgroups best suited for 
bimodal stimulation treatment [18,19]. To our knowledge, this is the 
first study to utilize a deep learning approach to predict patient out
comes with patient-reported outcome measures in individuals with 
tinnitus and highlight the important measures for model predictions. 
These results show great promise in using deep learning for clinical 

Fig. 6. Feature importance for Model 4, for the (top) responder class and (bottom) non-responder class. Interim THI group and Baseline THI group are the 
most important features for both responders and non-responders. (B) Summary plot of all predictions across 50 model iterations combing feature importance with 
feature effects. Each point corresponds to the Shapley value (x-axis) for a feature within a given instance, and the color of the point represents the feature value from 
low to high. Points are jittered in the y-axis. Features are ordered according to their importance. 
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applications, in which we can use a data-driven approach to reduce the 
number of measures necessary to collect for treatment prediction. While 
deep learning modelling has the potential to translate previous clinical 
results into future clinical predictions, future research is needed to 
optimize deep learning modelling as a decision support tool for an 
efficient personalized medicine approach in a clinical setting. 
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