Brain Stimulation 18 (2025) 97-99

ELSEVIER

Contents lists available at ScienceDirect
Brain Stimulation

journal homepage: www.journals.elsevier.com/brain-stimulation

®m  BRAIN

STIMULATION

Check for

Occipital nerve stimulation selectively modulates top-down inhibitory control (D

ARTICLE INFO

Keywords:

Nerve stimulation
Attention

Locus coeruleus
Goal-directed
Stimulus-driven
Brain stimulation

Dear Editor,

Modulating executive function using transcranial electrical stimu-
lation (tES) is a difficult feat with an inconsistent track record of success
[1]. One methodological approach is to use direct (tDCS) or alternating
(tACS) current stimulation to modulate neural plasticity, improving
behaviour via either bottom-up or top-down mechanisms [2]. However
recent research suggests that tES methods possess discrepancies between
the current needed to induce changes, and those which are actually
achieved in typical stimulation experiments [3].

Novel approaches to modulating neural activity via peripheral nerve
stimulation have been developed, including non-invasive stimulation of
the greater occipital nerve (NITESGON). Using NITESGON, research has
successfully modulated neural activity governing memory processes,
with evidence toward a norepinephrine-driven mechanism through the
Locus Coeruleus (LC-NE) [4]. Following this evidence, we chose to
pursue a series of two experiments which investigate if attentional
control can be modulated using NITESGON. Two pathways of modula-
tion, either via top-down goal directed processes or bottom-up stimulus
driven processes, could be selectively modulated via the peripheral
nerve through subcortical activity.

47 participants with no tES contraindications nor psychiatric di-
agnoses were recruited to participant in 1 of 2 experiments. In both
experiments, participants completed training blocks while either
receiving 40Hz (selected as opposed to tDCS due to mechanism in pre-
vious work [5]) NITESGON at 1.5mA for the duration of the task
(stimulation group), or sham 1Hz NITESGON for 30 seconds before
beginning the training (control group), and then returned after a period
of time of the testing blocks without stimulation. Thus, we endeavoured
to determine if pairing NITESGON with training would induce plasticity
and improve/sustain behaviour (Fig. 1A). Alternating-current occipital
nerve stimulation was delivered using a DC-Stimulation Plus device
from NeuroConn (Germany). Saline-soaked electrodes (35 cm?) were
placed on the C2 nerve dermatome equidistant from each ear and
each-other, with cathode place on left hemisphere, and anode placed on
right [4,5].

In Experiment 1 (Fig. 1B), 23 participants (9 female, 14 male; Mean
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age = 21.8, SD = 0.9) were randomly allocated to the stimulation group
(n = 12) or the control group (n = 11). Participants completed 4 blocks
of a sustained-attention task (Sust-att-RT) in which they were asked to
respond only when shown a specific letter, and to withhold responding
for any other letter. 1 hour later, participants returned to complete 4
blocks of the same task, with modified character stimuli (e.g., size) to
alter task demands. We chose 1 hour to allow participants a break, but
short enough that sustained attention may still be impacted.

In Experiment 2 (Fig. 1C and D), 24 participants (23 female, 1 male;
Mean age = 22.0, SD = 4.6) were randomly allocated to the stimulation
group (n = 12) or the control group (n = 12). Participant completed 2
blocks of a stop-signal reaction time task (Stop-sign-RT) in which they
were asked to respond by pressing the arrow key in the direction indi-
cated by the arrow on the screen. In some trials (25 %), the arrow would
change to red after 200 ms, and participants were asked to withhold
responding (Fig. 1C). During the day 2 testing session, participants were
given a similar task (Stop-change-RT; stop-change reaction time), in
which instead of a colour change, participants heard an auditory stim-
ulus 150 ms after initial presentation, which indicated to participants
they should withhold the initial response, and redirect to the up-arrow
(Fig. 1D).

In both experiments participants completed a modified version of the
task to probe the same domain (e.g., attention), but prevent task-specific
effects from obscuring cognitive modulation. Participants reported a
group-guess and completed a follow-up tES questionnaire to gauge
discomfort.

In experiment 1, there were no significant differences in NoGo ac-
curacy between active and control groups during either training (F
(1,20) = 0.02,p = 0.88, ’71% = 0.001) or testing (F(1,20) = 0.19,p = 0.67,
’15 = 0.01) (Fig. 1E). There was no significant difference in reaction time
between groups during training (F(1,20) =0.08,p =0.77, qg =0.004) or
testing F(1,20) = 0.24, p = 0.63, ’71% =0.01) (Fig. 1F). We therefore found
that NITESGON did not improve or sustain inhibitory ability in the
sustained attention task, even after a 1 hour recovery period.

In experiment 2, day 1 training revealed that Stop-sign-RT did not
differ between groups in reaction time (F(1,19) = 0.594, p = 0.45, ;112, =
0.03), nor accuracy (F(1,19) = 0.594, p = 0.45, 1112, = 0.03) (Fig. 1G).
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Fig. 1. A) Task design for experiment 1 and 2. B) Experiment 1 (Sust-att-RT)) study design. C) Experiment 2, day 1 (Stop-sign-RT) study design. D) Experiment 2, day
2 (Stop-change-RT) study design. E) NoGo accuracy during the training and testing sections of the Sust-att-RT) (1 hour break between training and testing). F)
Reaction time during the training and testing sections of the Sust-att-RT). G) Accuracy in the training and testing sections of the Stop-sign-RT/Stop-change-RT. H)
Reaction time in the training and testing sections of the Stop-sign-RT/Stop-change-RT. *p < 0.05. I) Current modelling for NITESGON. J) Group guess for Sust-att-RT
and Stop-sign-RT experiments. The Sust-att-RT refers to the response time from stimulus to response. In experiment 2, the reaction time refers to the calculated values

of Stop-sign-RT/Stop-change-RT (i.e., mean [RT] - stop-signal delay (SSD)).

Interestingly, 24 hours later, the Stop-change-RT was significantly faster
(corrected threshold for both accuracy and reaction time analysis: peorr <
0.025) (F(1,20) = 5.835,p = 0.02, ng = 0.23), in the group that received
40 Hz stimulation (mean Stop-change-RT = 0.33s, SD = 0.04s)
compared to the sham group (mean Stop-change-RT = 0.39s, SD =
0.08s) (Fig. 1H). There was no significant difference in accuracy be-
tween groups (F(1,19) = 0.157, p = 0.696, ;112) = 0.008) (Fig. 1G).
Current modelling was performed in SimNIBS [6] using 1.5mA cur-
rent intensity, 5 x 7 cm electrode pads placed over the C2 dermatome at
approximately ear-height, equidistant from each ear and each-other,
with cathode place on left hemisphere, and anode placed on right,
identical to our stimulation parameters. (Fig. 1I). This illustrates the
theoretical current distribution using NITESGON placement if it were
driven by a primarily transcranial mechanism. Here, previous work has
shown that gamma stimulation to the occipital region can modulate
selective attention [7], however the task-specificity of our effect sug-
gests against a general attentional improvement. There was no signifi-
cant difference in group guess in either experiment, suggesting against a
placebo-driven effect in either the Sust-att-RT task (X? = 0.016, df =1, p
= 0.90), or Stop-sign-RT task (X? = 0.034, df = 1, p = 0.85) (Fig. 1)L.
Previous work [8] has found that LC-NE stimulation increased
goal-directed attention and response inhibition, fitting with our findings

that NITESGON improved performance on the Stop-change-RT task
compared to the control group. Additionally Bari et al. [8] reported that
inhibition of the LC neurons increased impulsivity, akin to a
stimulus-driven mode, thus following this interpretation, NITESGON
stimulation in theory would not improve Sust-att-RT performance, given
that the present interpretation is that Sust-att-RT performance is in-part
predicted by stimulus-driven attention and bottom-up inhibition.
Therefore, concurrent with the dual control mechanisms evidenced in
previous work [8], NITESGON could be activating the LC [4], increasing
top-down goal-directed processes without changing stimulus-driven,
bottom-up processes, although additional neuroimaging and arousal
measures are necessary to exclude other subcortical contributions due to
the non-specific input to numerous brain centers.
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