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Abstract 

Neural activation patterns underlying motor learning that are captured using 

functional imaging can only reflect the patterns occurring at a given moment. Motor 

learning is known to comprise of many processes which are variably biologically or 

temporally distinct. In order to improve the understanding of how regional activation 

patterns may vary across different mechanisms of motor learning, we performed an 

ALE meta-analysis of imaging studies that directly compares online and offline motor 

learning. Using coordinate-based meta-analysis methods and independent review, 

1,777 studies were returned from three databases. 38 studies investigating motor task 

learning met the inclusion criteria, were allocated as either online or offline learning 

based on their scanning placement, and revealed both unique and overlapping 

regional activation/deactivation patterns. We identify activation changes in regions that 

are consistent for online learning and offline learning. Our findings concur with those 

of previous meta-analyses investigating online motor learning, and find support for 

previous theories surrounding the networks involved in consolidation and offline 

processes in motor learning. Shared activation between online and offline motor 

learning was found in the supplemental motor area and somatosensory cortex, 

highlighting regions which are continually involved in both processes, and identifying 

those which may be differentially modulated to alter motor learning outcomes. 
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1. Introduction 

Brain imaging research has been used to uncover the neurobiological 

underpinnings of numerous cognitive functions and processes. When performed 

alongside a task, imaging allows researchers to visualize the activity of the brain, 

correlating activity with function and process. During motor tasks, this method 

uncovers the activation changes and processes that underly the domains of 

movement, working memory, error detection, adaptative learning, and attention 

(Seidler et al., 2012; Shadmehr et al., 2010).  

Specific to motor learning, there are both continuous and transient neural processes 

which govern how the brain learns movements (Verhoeven & Newell, 2018). Although 

there is variability in the naming of the processes, there is consensus that motor 

learning begins with acquisition (sometimes called learning or motor adaption), which 

is followed by consolidation, and then a longer and less defined stage in which the 

brain retains the learned skill, sometimes referred to as retention (Luft & Buitrago, 

2005). At the behavioural level, acquisition is the initial learning of the task, either 

during (fast) or between sessions (slow) (Luft & Buitrago, 2005), or alternatively 

described as occurring over three phases, the cognitive, the associative, and the 

autonomous (Marinelli et al., 2017). Functionally, motor learning acquisition has been 

correlated with activation of the primary motor regions, sensory regions, cerebellum, 

basal ganglia, prefrontal cortices, cingulate cortices, and parietal cortices, dependent 

upon the type of task being used (Ghilardi et al., 2000). In the domain of adaptive 

motor learning, acquisition manifests as the combined influence of an internal forward 

model, continued adaptation to motor targets, and the integration of information from 

commands and its subsequent sensory feedback (Shadmehr et al., 2010). Such a 

system relies on the same regions which have previously been associated with motor 
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learning. Specific systems including the cortico-striatal and cortico-cerebellar are 

implicated as being essential for acquisition and performance of learned motor skills 

(Doyon & Benali, 2005), albeit there is no meta-analysis to our knowledge that has 

assessed the consistency of activation of the cortico-striatal network across multiple 

forms of motor learning experiments, as it pertains to the adaptative motor learning 

framework.  

In consolidation, the stage which follows the initial learning of the task, the learned 

skill is consolidated (however is susceptible to interference). It has been illustrated that 

the M1 region is involved in motor consolidation, with one study showing that brain 

activity shifts from prefrontal to premotor, parietal, and cerebellar regions (Muellbacher 

et al., 2002). Research has implicated other consolidation-related structures including 

the striatum, somatosensory cortex, lobule VI of the cerebellum, and the caudate 

nucleus (Debas et al., 2010; Doyon & Benali, 2005; Wali, 2020). Following acquisition 

via adaptive processes, the newly acquired internal model becomes increasingly 

consolidated and thus resistant to interference by a competing model (Shadmehr & 

Brashers-Krug, 1997).  

Accordingly, motor learning acquisition (via the processes of adaptation and 

development of the internal model) is a form of online learning, while learning effects 

during motor consolidation would be considered offline learning (whereby the internal 

model becomes increasingly resistant to retrograde interference). It has been shown 

that these forms of learning are governed in some ways by similar regions (Ehsani et 

al., 2016), and in other instances, different ones (Lacroix et al., 2019; Pollok et al., 

2020). A pattern then emerges where regional activation changes across motor 

learning processes, albeit not necessarily for the same reasons. One consistent 

network which appears engaged in both online and offline motor learning is the 
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cerebral network, which includes the M1, pre-motor cortex, supplementary motor area 

(SMA), basal ganglia, prefrontal cortex, posterior parietal cortex, and cerebellar 

regions (See Figure 1 in Dahms et al. (2020) for a clear schematic of how this network 

is engaged over motor learning stages).  

Although there is extensive work in motor learning, with a strong understanding of 

the brain activation patterns that occur during different timepoint in the learning 

process, there are few studies which broadly discuss the neural correlates of online 

and offline learning, as they relate to motor learning, and the current theories 

surrounding their mechanisms. One known review (Di Rienzo et al., 2016) investigated 

online and offline performance gains during motor imagery, as it relates to the 

promotion of motor learning. They conclude that online and offline learning contribute 

to performance, highlighting that the neurophysiological correlates of offline motor 

imagery practice are generally unexplored. We therefore feel it important to produce 

a similar analysis which investigates online and offline motor learning correlates 

across previous motor learning studies, in order to validate and judge the consistency 

of activation across a heterogeneous literature of task choices, demographics, and 

scanning points.  This meta-analysis would then seek to relate the neural signatures 

to current frameworks in motor learning in order not only to support regional activation, 

but relate online and offline differences in the context of current motor learning theory 

(Gupta & Rickard, 2024; Shadmehr et al., 2010).  

We believe that it is valuable to create a generalized picture of a theoretical motor 

learning experiment where the online and offline correlates of motor learning can be 

effectively compared and contrasted using meta-analytical methods. By performing a 

coordinate-based meta-analysis (CBMA) on studies that looked at different periods of 

motor learning, we can create a binary representation of motor learning across online 
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and offline stages that may better capture the transient or persisting nature of specific 

activation patterns and processes. Functional-imaging meta-analyses are becoming 

increasingly popular, additionally with the support of large-scale neuroimaging 

databases such as NeuroSynth (Yarkoni et al., 2011) and NeuroQuery (Dockès et al., 

2020). Indeed, meta-analytical environments such as NiMARE (Salo et al., 2023) 

further organize and simplify the meta-analytical process, by combining numerous 

tools and databases into a single library and allowing users to access a larger scale 

of resources to complete rigorous and reproducible analyses. The objective of this 

study is therefore to use a coordinate-based meta-analysis with activated-likelihood 

estimate (CBMA ALE) approach to investigate motor learning studies available on the 

NeuroQuery, NeuroSynth and PubMed databases.  

In the following meta-analysis, we aim to produce an estimated representation of 

how brain activation patterns during two aspects of motor learning (online and offline) 

may transition or persist, which will provide context and clarity to how regional 

activation/deactivation may occur during motor learning. We will follow an approach 

that categorizes studies based on this criteria, and investigates unique and 

overlapping patterns between online and offline learning. This work intends to address 

the manifestation of neural signatures representing online and offline learning, 

allowing for a clear comparison between the regions implicated, across a variety of 

motor learning tasks and paradigms. Identifying consistent regional activation will also 

test current hypothesis surrounding the circuitry involved in acquisition and 

consolidation, and place regional activation signatures in the context of online and 

offline motor learning theories, and their synthesis with adaptive motor control (Gupta 

& Rickard, 2024; Shadmehr et al., 2010). Accordingly, our results aim to be a 

generalizable representation of motor learning correlates during two critical periods in 
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the process. We also aim to give context to the growing number of studies which 

investigate motor learning, and even stimulation applications (e.g., tDCS, tACS, TMS) 

to modulate motor learning, in order to provide insight into regional specificity in both 

online and offline targets for modulation, regardless of the task.  

 

2. Methods 

This meta-analysis sought to estimate activation changes across a two motor 

learning processes, by taking existing motor learning stages, and comparing and 

contrasting activation patterns between the scanning points. We chose to subdivide 

motor learning into either online or offline timepoints (either scanning during the task, 

or after the fact). Accordingly, we use the scanning time point as the categorizing 

factor. Scanning concurrent with the task learning would capture signatures of online 

learning (e.g., acquisition) or reflect neural processes of motor task performance, and 

scanning after the task or during rest would capture offline learning or the after-effects 

of the learning (e.g., consolidation or retention). We also opted not to reduce the study 

by criteria by the task under investigation, in order to 1) generalize our findings to 

motor learning processes non-specific to a given task, and 2) to allow more diverse 

study inclusion. No ethics approval was required for this study since no primary data 

was collected.  

 

2.1 Study Inclusion  

The pipeline of study inclusion criteria is illustrated in Figure 1. All studies included 

had publication year, authors, title, and reported activation/deactivation peaks and 

coordinates listed. Studies were only accepted if they could be found online (e.g., 

internet search, database search). All studies included were in English.  
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Studies included in the meta-analysis were required to have a clear study design, 

and define when the imaging took place in the course of the experiment. This was 

necessary to confirm what the reported peaks reflected (e.g., during or after task). 

Pathology groups or medication groups were excluded to ensure that coordinates 

reported were the result of motor task learning, and not the result of impaired or altered 

motor learning. In addition, studies with age extremes (i.e., less than 18) or studies 

that explicitly investigated ‘aging effect’ were not included, as activation changes due 

to aging or maturation may not represent motor learning in a comparable way 

(Zapparoli et al., 2022). Studies must also have a clear motor learning component (i.e., 

studies purposefully investigating motor tasks). Studies that included motor tasks 

without any learning aspect were excluded, since peaks reported in these studies may 

not reflect a learning effect. Studies included were required to be research articles, so 

reviews and meta-analyses were not included. Studies that were beyond the scope of 

the meta-analysis (e.g., non-human, ROI, investigations of subject variability) were 

excluded in order to refine the analysis to group-level activity reflecting motor learning. 

During extraction, studies were excluded if data was missing (i.e., peak value, 

coordinate values, cluster size), or if the data was of an incompatible type for a 

coordinate-based meta analysis (i.e., T-score instead of Z-score).  
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Figure 1. Pipeline of study inclusion from database search, title screening, abstract 
screening, full text screening, and categorization. Values for exclusions and inclusions 
are separated by database searched. Initial database search was automated, all 
screening and categorization were manual.  

 

 

2.2 Database and search 

The databases, NeuroSynth (https://neurosynth.org/) (Yarkoni et al., 2011) and 

NeuroQuery (https://NeuroQuery.org/) (Dockès et al., 2020) were searched through 

the NiMARE python package (NiMARE v0.0.11 (RRID:SCR_017398; (Salo et al., 

2023)). PubMed was used to supplement studies which may not have been indexed 

by either database, in order to a more robust search methodology which is not 

restricted by the imaging databases.  

In NeuroQuery, the abstract search term ‘motor learning’ was used. Following the 

initial search, to widen the search results using a varied search term, the NeuroSynth 

database was queried using the term ‘motor task’. The search terms differ because, 

while this meta-analysis intends to focus on motor learning, NeuroSynth did not 
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support motor learning as a search term. It is expected that its use as a search term 

will result in a larger number of rejections for the dataset returned, since the search 

term was less specific to motor learning. The search term was limited to English, since 

to our knowledge the NeuroQuery and NeuroSynth databases only contain studies 

written in English. For more information about the NeuroQuery database, and its 

comparison to NeuroSynth as a meta-analytical search software, see the paper by 

Dockès and colleagues (Dockès et al., 2020). PubMed was therefore used to search 

studies which may not have been indexed within either NeuroQuery or NeuroSynth, 

but which may meet criteria.  

All databases were searched in March, 2024. The initial database search was 

automated, and following the initial query, a manual selection process was carried out 

in two stages; 1) To determine inclusion or exclusion of each study, and 2) to 

categorize the included studies. At both stages, three independent reviewers screened 

each study for the inclusion/exclusion criteria. The title, abstract, and then full text of 

each paper were subsequently used to verify no clear exclusion factors, and study 

inclusion was then verified with the body of the text. If both reviewers agreed on a 

decision to include the study, it was passed to the second stage of categorization. 

Disputes were moderated by a third party. If all reviewers agreed that the study did not 

meet inclusion criteria, or had an exclusion criterion, then the study was rejected. In 

stage two, the same process was carried out, where two independent reviewers use 

the categorization criteria to determine which category the study was to be included. 

If there was disagreement in decision, the study was given to the third independent 

reviewer, who moderated the decision on categorization.  

 

 



11 
 

2.3 Study data collection 

Two reviewers independently gathered data from each report, and disagreements 

were handled with a third independent reviewer. All data was validated by a third 

reviewer. The number of peaks and their coordinates from each study were 

automatedly derived using the NiMARE package, and all other study information was 

sourced from the literature. Due to the nature of this meta-analysis, the peaks and 

their coordinates are designated as the main outcome variable from the studies 

analyzed.  

Data included the year of publication, the sample size, and type of task used, was 

reported, along with mean age, age range, and right handedness, and number of 

females in each sample (as available). When studies did not report a value, it was left 

blank and not inferred. In the instance where a study stated the initial sample 

demographic, but then reported withdrawals/data exclusions without updated 

demographic information, the corresponding demographic information was not 

inferred, and instead was left blank.  

 

2.4 Synthesis and analysis methods 

An activation likelihood estimate algorithm was used to perform a CBMA on the 

studies. Briefly, an ALE analysis models the activation based on coordinates and peak 

values, for each study individually. The created activation maps are combined to a 

single map based on a voxel-based assignment of each ALE value, and compared to 

a null distribution, returning a z-map of the activation for each group/subgroup.  It is 

important here to note that the data presented here does not strictly represent 

activation, but rather the coordinates and peaks reported are simply values at which 

there was significant increase or decrease in activation. Thus, while the ALE 
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describes, in name, ‘activation’; the results represent the implication of regions in 

general - rather than increased activation. In an ALE analysis, a Gaussian kernel is 

used to account for the spatial uncertainty of the peaks by smoothing the values across 

neighbouring voxels. The width of the kernel is proportional to the sample size of the 

study, accounting for the likelihood that studies with larger sample sizes are a better 

indicator of the true location of a peak (Eickhoff et al., 2009). The ALE analysis was 

performed on each group (i.e., online and offline), with an uncorrected significance 

threshold of p<0.001, following previous ALE papers (Grosbras et al., 2012; Hétu et 

al., 2013). Cluster volume for both ALE analyses was set to a minimum of 100 mm3, 

although for completeness, visualizations include all clusters regardless of cluster size. 

Those clusters which met the minimum size were subsequently mentioned and 

discussed.  

The resulting ALE statistical maps were used in a conjunction analysis, in which 

each online and offline ALE maps were compared to identify regions that have 

significant overlapping activation/deactivation. Regions were identified with the 

Automatic Anatomical Labeling (AAL) template (Tzourio-Mazoyer et al., 2002) and 

MNI coordinates. Lasty, in order to investigate bias in activation patterns shown, a 

Jack-Knife analysis was performed, whereby studies are systematically removed to 

determine how each cluster is impacted. This allows for an identification of clusters 

which are consistently activated across studies opposed to clusters which are 

dependent on a smaller subset of studies.   
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3. Results 

3.1 Database Search 

The results of the NeuroQuery, NeuroSynth, and PubMed databases searches 

yielded 401, 116, and 1,260 studies respectively (1,777 total). Overall, 38 studies were 

retained. Of the accepted studies, 32 were categorized as online learning, and 6 as 

offline learning (Table 1).  

Table 1. Studies included in the meta-analysis, with metadata and categorization.  

Type Study N 
SS 

N 
F 

N 
RH 

Age 
Range 

Mea
n 

Age 
Task Used 

Onlin
e 

Heun et al. (2004) 10 5 10 23-25 23.7 SRTT 
Oishi et al. (2005) 18 11 18 21-39 - SRTT 

Penhune and Doyon 
(2005) 12 6 12 - 24.8 TMST 

Olson et al. (2006) 10 5 10 19-40 25 SRTT 

Macintosh et al. (2007) 12 7 12 - 29 Finger 
movement 

Anguera et al. (2007) 11 5 11 18-30 21.4 Spatial task 

Grafton et al. (2008) 10 - - - - Tracking 
task 

Tamás Kincses et al. 
(2008) 15 7 15 25-32 27.5 SRTT 

Rémy et al. (2008) 12 6 12 - 23.6 Coordinatio
n task 

Albouy et al. (2008) 90 - 90 19-28 - SRTT 

Schlund et al. (2008) 10 - 10 18-50 - 
Operant 

Conditionin
g task 

Fernández-Seara et al. 
(2009) 14 7 14 - 31 SRTT 

Orban et al. (2010) 32 17 32 - 23.9 SRTT 

Tomassini et al. (2011) 12 9 12 - 30.1 Tracking 
task 

Orban et al. (2011) 12 6 12 - 26.5 SRTT 
Pammi et al. (2012) 17 - 17 - - SRTT 

Watanabe et al. (2011) 15 0 15 19-47 22.8 Imitation 
task 

Lefebvre et al. (2012) 20 11 20 18-62 33.9 Cursor task 
Melcher et al. (2013) 33 18 33 - 24.7 Go/NoGO 

Lissek et al. (2013) 18 11 18 23-34 25.6
6 SRTT 
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Cunningham et al. 
(2013) 24 20 24 - 25 Tracking 

task 
Tzvi et al. (2014) 17 10 - 20-32 - SRTT 

Kornysheva and 
Diedrichsen (2014) 32 16 32 19-36 24.8 

Motor 
sequence 

task 

Karim et al. (2017) 13 6 13 - 23.8 
Motor 

sequence 
task 

Tracy et al. (2001) 5 3 5 21-27 23.6 
Single 
finger 

opposition 
Drobyshevsky et al. 

(2006) 31 15 31 22-76 41 SRTT 

Sacco et al. (2009) 8 4 8 20.8-
34.8 27 Finger 

movement 

Gheysen et al. (2010) 22 17 22 19-25 - 
Serial color 
matching 

task 

Arima et al. (2011) 13 0 13 24-35 27.3 Tongue-
training task 

Heitger et al. (2012) 34 19 34 20-30 23 
Bimanual 

coordinatio
n training 

Müller et al. (2002) 7 0 7 23-46 - SRTT 
Bo et al. (2011) 14 8 14 - 21.4 SRTT 

Offlin
e 
 

Gregory et al. (2014) 12 8 12 - 25 SRTT 

Vahdat et al. (2011) 13 - 13 21-44 - Reaching 
task 

Gryga et al. (2012) 15 5 15 22-32 - 
Sequential 
pinch force 

task 
Tung et al. (2013) 24 15 24 - 30 SRTT 

Sidarta et al. (2016) 22 14 22 - 22.5 Reaching 
task 

Sami and Miall (2013) 24 - 24 - 23.6 SRTT 
SS: Sample Size, F = Number of Females, RH = Number of right handed participants, 
SRTT = serial reaction time task (or alternative), TMST = temporal motor sequencing 
task. 
 

 

3.2 ALE results  

The ALE returned 20 significant (p<0.001) clusters greater than 100 mm3 in volume 

in the online dataset and 11 in the offline subgroup. Significant clusters, regardless of 
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size, are shown for online motor learning (Figure 2A) and offline motor learning (Figure 

2B).  Cluster MNI coordinates, peak statistic, size, and associated region are 

presented in Table 2 and Table 3.  The ALE analysis of online motor learning studies 

revealed significant activations of frontal, parietal, and temporal gyri, the cerebellum, 

putamen, pallidum, and thalamus, among other regions. The offline motor learning 

analysis revealed ALE clusters in the regions of the cerebellum, putamen, cingulum, 

pre and post-central gyri, frontal gyri, and supramarginal gyri. 

 

 

Figure 2. ALE results showing all significant clusters during A) Online and B) Offline 
motor learning. Colour bar represents magnitude of Z-statistic, and colouring threshold 
corresponds to p<0.001.  
 
 
 
 
 
 
 
 
 



16 
 

Table 2. Significant clusters from ALE analysis of online motor learning. 

Cluster 
ID X Y Z Peak 

Statistic 
Cluster 

Size 
(mm3) 

Region (AAL) 

1 -4 -8 54 6.177475 7960 L Supplementary 
Motor Area 

2 -36 -24 58 6.420258 4216 L Precentral Gyrus 

3 16 -50 -20 4.754861 2008 L Cerebellum, Lobule 
4/5 

4 -24 -64 52 5.034228 1544 L Superior Parietal 
Gyrus 

5 26 2 2 4.502371 1528 R Putamen  

6 26 6 56 4.476016 1400 R Superior Frontal 
Gyrus 

7 -24 -28 -12 4.224487 680 L Parahippocampal 
Gyrus  

8 -32 0 52 3.820151 584 L Middle Frontal Gyrus 
9 -20 -54 -20 3.925206 536 L Cerebellum Lobule 6 

10 52 -24 42 4.040562 440 L Postcentral Gyrus 
11 -24 8 4 3.7921 408 L Putamen 

12 -42 -50 46 3.475601 320 L Inferior Parietal 
Gyrus Gyrus 

13 -18 -22 4 3.875925 264 L Thalamus 
14 -30 -12 -8 3.958692 248 L Putamen* 
15 -10 -64 56 3.813831 216 L Precuneus 
16 42 -20 54 3.511122 160 R Postcentral Gyrus 

17 -20 -78 44 3.437217 152 L Superior Occipital 
Gyrus 

18 -22 -6 -2 3.602561 144 L Pallidum 

19 48 10 30 3.596088 144 R Inferior Frontal 
Operculum 

20 -28 -4 8 3.491422 136 L Putamen 
21 -8 -70 46 3.597424 104 L Precuneus  

AAL: Automated Anatomical Labelling Atlas 3. *Indicates region closest to coordinates 
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Table 3. Significant clusters from ALE analysis of offline motor learning. 

Cluster 
ID X Y Z Peak 

Statistic 
Cluster 

Size 
(mm3) 

Region (AAL) 

1 -28 -20 68 4.004511 1128 L Precentral Gyrus 
2 -28 2 2 4.944095 912 L Putamen 
3 -32 -28 54 4.537863 592 L Postcentral Gyrus 
4 -54 -22 18 3.648504 512 L Supramarginal Gyrus 
5 8 -84 42 3.961662 288 R Cuneus 

6 -60 -16 8 3.729101 264 L Superior Temporal 
Gyrus 

7 24 -42 -24 3.703366 256 R Cerebellum 
8 -8 -12 46 3.609021 232 L Middle Cingulum 

9 -56 20 2 4.152583 224 Triangular Part of the 
Inferior Frontal Gyrus 

10 -58 -34 30 3.702617 216 L Supramarginal Gyrus 

11 -4 -6 56 3.588852 184 L Supplemental Motor 
Area 

AAL: Automated Anatomical Labelling Atlas 3  
 

3.3 Conjunction analysis 

The results of the conjunction analysis revealed two clusters larger than 100 mm3 that 

had significant shared activation changes. The clusters are shown in Figure 3, with the 

coordinates, peak statistic, and cluster size. Cluster 1 corresponded to the left 

postcentral gyrus, and cluster 2 corresponded to L supplemental motor area.  
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Figure 3. ALE results showing all significant shared clusters during both online and 
offline motor learning. Colour bar represents magnitude of Z-statistic (Peak Stat), and 
colouring threshold corresponds to p<0.001. Peak State corresponding to Z-statistic 
is numerically represented with Cluster ID, MNI coordinates, and Cluster Size. 
 

3.4 Evaluation of robustness  

The results of the jackknife analysis showed that in each of the online and offline study 

groups, there was one cluster in which all studies included contributed activation. For 

the online group, a cluster with centre of mass at MNI coordinates [0, -20, 17] had 

contributions from all studies, corresponding to the midpoint between thalami. The 

offline group produced a cluster with centre of mass at MNI coordinates [-1, -23, 12] 

had contributions from all offline studies, likewise attributed to the midpoint between 

thalami. All cluster values are presented in the Supplemental Tables. Thus our results 

illustrate that both online and offline scanning studies implicated activation changes in 

(bilateral) thalami.  

 

 

 

Z-
st
at
is
tic

Cluster ID X Y Z Peak Stat Cluster Size (mm3)
1 -32 -26 54 4.154494 288
2 -4 -6 56 3.588852 184
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4. Discussion 

The analysis found that both online and offline learning studies had consistent 

activations of several regions encompassing known circuits in motor acquisition and 

consolidation, corroborating current regional implication in both motor adaptation and 

its subsequent consolidation. Shared activation between stages was also confirmed 

in the motor and somatosensory cortices. This finding represents novel evidence of 

consistent motor networks activated across a variety of motor learning paradigms, and 

which are specific to either online and offline motor learning. Our findings of offline 

motor learning correlates also provide empirical support for the cortico-striatal 

network’s involvement in motor learning, irrespective of the task (i.e., reaching, pinch 

force, SRTT), and the cerebellar-thalamic-cortical activation described during motor 

adaptive processes (Porrill & Dean, 2007).  

 

4.1 Online motor learning  

Findings from the analysis of studies that performed concurrent scanning and motor 

learning revealed that across both traditional serial reaction time task (SRTT) and 

visuomotor tasks, there was significant activation of previously described core regions 

associated with motor learning. Namely, in comparison to a recent quantitative meta-

analysis of motor learning (Hardwick et al., 2013), we corroborate here that areas 

including the cerebellum, putamen, thalamus, precentral  (M1) and parietal (SPL) 

regions are activated consistently during online motor learning experiments.  

Placed in context of regional connectivity and motor learning circuitry, the regions 

implicated in our analyses are also supported by regions involved in motor system 

control, whereby M1 regions extend descending pathways to cerebellar regions and 

the basal ganglia, which in turn terminate on thalamic nuclei, creating a loop with 
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output back to the M1 (Papale & Hooks, 2018). In the context of more recent 

framework, including that of adaptive motor control and learning, cerebellar 

involvement during online scanning would be consistent with the forward model of 

adaption, whereby consequences of motor commands are predicted and thus 

movement is corrected (Shadmehr et al., 2010). Accordingly, this movement could 

then be corrected via the thalamus, which is a region also consistently activated online 

here, projecting to the cortices (i.e., motor) (Shadmehr & Krakauer, 2008). 

Furthermore, we note extensive activation of the subcomponents of the basal ganglia 

including putamen and globus pallidus, which too have been proposed to play a role 

in correction during controlled movement in the motor cortex (Magdoom et al., 2011).  

It would then appear that across the numerous task parameters and designs included 

here, consistent activation of regions involved in the adaptative pathway framework 

(e.g., cerebellum, thalamus, cortex, putamen) supports its role in motor learning, and 

identifies further numerous cortical regions likely involved in further processing, and 

which have previously been shown necessary for correct motor memory (Ebrahimi & 

Ostry, 2024).   

It is noted that much of the activation presented in our findings appears left-

lateralized, however we cannot draw conclusions about lateralization in motor 

learning, since we confirmed that 30 of the studies of online learning (93%) recruited 

participants that all boasted right-handed tendency (the remaining 2 studies did not 

clearly report handedness, and thus conclusions could not be drawn). Thus, it is likely 

that the pattern of lateralized activation is related to handedness (Andersen & Siebner, 

2018).  
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4.2 Offline motor learning 

The offline scanning analysis revealed that while regions such as the cerebellum, 

precentral gyrus, and putamen are activated in both the online and offline studies, 

there are several regions which were uniquely activated in the offline studies alone. 

The postcentral gyrus, supramarginal gyrus, cuneus, superior temporal gyrus, middle 

cingulum, inferior frontal gyrus, and supplemental motor area had clusters that were 

significantly activated during offline scanning. Interestingly, it has been shown in other 

work that regions such as the supramarginal gyri and postcentral gyri are indeed 

sensitive to training duration, and show activation changes during resting state scans 

following motor learning (Ma et al., 2011). The cuneus has also been implicated during 

resting state scans following motor learning, and has been suggested to be a part of 

a functional relationship with the sensorimotor areas (Roshchupkina et al., 2022), with 

additional evidence showing that resting state cuneus functional activity correlates with 

motor learning (Mary et al., 2017). Pertaining to the offline regions identified here, the 

middle cingulum, putamen, post-central, pre-central, and cuneus have all been 

implicated as being a part of the cortico-striatal network (Debas et al., 2014). This 

network has been presented as a potential mechanism by which motor sequence 

consolidation occurs in the brain, as it has been shown that increased functional 

connectivity within the network relates to greater durability of motor trace through 

offline consolidation processes (Debas et al., 2014). We therefore find that many of 

the regions which are activated during resting state and post-motor learning scans 

were identified as regions of a network related to consolidatory processes in motor 

learning. Similarly to online motor learning, consolidation of motor memory in the 

context of adaptive motor learning framework would also explain cerebellar activation 

when arguably there is no movement to be corrected, and this dually implicates the 
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consolidatory processes which may similarly be occurring during post-learning offline 

scanning. Animal studies (Attwell et al., 2002) have shown that the cerebellum is 

equally involved in retention, positing that adapted behaviour immediately following 

acquisition is dependent on cerebellar plasticity (Krakauer & Shadmehr, 2006).  

It is important to note that offline scanning timepoints may not capture strictly ‘offline 

motor learning’ processes as with online motor learning. This is due to the fact that 

some tasks do not show offline improvements, such as the explicit SRTT (Tunovic et 

al., 2014). Despite this, we highlight that reported peaks are necessary for study 

inclusion, and thus by methodology, studies included here did report activational 

changes during the offline scanning point. Indeed the SRTT by Gregory et al. (2014) 

found correlations with next-day improvement, and that of Tung et al. (2013) 

investigated neural changes as a result of motor-task recency, and thus while the 

findings may not strictly represent offline motor learning processes, they do implicate 

regions association with the after-effects or changes to neural activation as a result of 

motor learning.  

 

4.3 Shared activation between online and offline learning 

The validation of both online and offline correlates of motor learning here, justify a 

further conjunction analysis in which we identify clusters which significantly overlap 

between online and offline regional activation changes. There were two significant 

clusters (larger than 100mm3) that arose from the analysis, the first being the left 

postcentral gyrus, and the second being the left supplemental motor area. The 

implication of the left postcentral gyrus is consistent with motor learning both online 

and offline, given that it contains the primary somatosensory cortex (DiGuiseppi & 

Tadi, 2023). Indeed the somatosensory cortex is a contributor to motor memory 
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consolidation, as previous work has shown that theta-burst transcranial magnetic 

stimulation (cTBS) of the somatosensory cortex interfered with consolidation and 

eventual retrieval (Kumar et al., 2019).  The role of the somatosensory cortex in online 

motor learning has also been extensively evidenced (Ito et al., 2016; Ostry et al., 2010; 

Wong et al., 2012), whereby the improvement trajectory of even implicit motor tasks 

can be altered with somatosensorial disruption (Vidoni et al., 2010). Similarly, the 

supplementary motor area (SMA) has also been shown have oscillatory changes 

reflecting performance improvement at post-training, and repetitive TMS (rTMS) of the 

SMA, directly after practice, reduced recall during a motor task (Tamaki et al., 2013; 

Tanaka et al., 2009). During online motor learning, the SMA is generally considered 

important for motor control (Nachev et al., 2007), and indeed this region was 

highlighted in the meta-analyses by Hardwick et al. (2013) and by Dahms et al. (2020). 

Thus, our findings suggest that while online and offline motor learning correlates have 

distinct activation which is consistent across numerous task types and populations, 

there is consistent activation of the SMA and somatosensory cortex across both 

groups. It should be noted, however, that despite having overlapping regional 

activation changes, the underlying processes which occur may differ dependent on 

the motor stage. 

 

4.4 Consistency with adaptive online and offline motor learning framework 

There is noted concordance between the results presented here, and the proposed 

adaptive motor learning theory put forth in recent years (Tani et al., 2014). Consistent 

online activation of the basal ganglia (notably putamen), cerebellum, motor cortices, 

SMA, and frontal regions can be placed easily within current theories of motor learning 

activation (Krakauer et al., 2019). This goes beyond the traditional sequence learning, 
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when considering that, despite a majority SRTT, the online motor learning studies 

included ranged beyond strict sequence learning, and so it is possible that activation 

of region, consistent with adaptive motor learning theories, is generalizable beyond 

sequence representation. Similarly, offline activation of regions including basal ganglia 

and cerebellar  nuclei is consistent with error-based learning processes, whereby the 

cerebellum exerts normal inhibition of the motor cortices via the thalamus (Spampinato 

& Celnik, 2021). Consistent too, with offline activational patterns representing striatal-

cortical network activation, is a noted shift from cerebellar to striatal-cortical network 

which is thought to represent improved forecasting models in the cerebellum 

associated with error correction and updating (Dahms et al., 2020). Overall then, our 

results support signatures consistent with the adaptive motor learning frameworks, 

and support consistent activation across numerous motor studies with varying tasks, 

durations, and specifications. We also report numerous instances of activational 

similarity between online and offline scanning, which suggests that regions associated 

with adaptive motor processes during learning are similarly engaged after online 

learning has ceased, but when continued learning processes still occur.  

 

4.5 Limitations 

Owing to a small number of studies that were eventually included in this analysis, 

we opted not to perform sub-analyses by the type of task used, as the low number of 

studies included in each sub-analyses would not provide generalizable results. Thus 

our findings should be taken in context of activation which is sufficiently represented 

across a variety of tasks (and indeed there were clusters which were activated across 

studies, regardless of task, see Supplemental Tables.  
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Regions between bilateral thalami likely did not survive the ALE or conjunction 

analyses since the individual activations were spread inconsistently across both 

thalami, and therefore producing no clear cluster reaching significance. As a result, 

the Jackknife analysis produced the midpoint of the cluster directly between thalami, 

suggesting thalamic involvement, but not with notable spatial concentration. 

Accordingly, the thalamus is also a region of strong consideration for implication in 

online and offline motor learning, but it is not extensively discussed here.  

There is a substantial difference in the literature size sourced for each online and 

offline group. This is likely due to an (understandable) tendency to assess motor 

learning correlates concurrent with the task as opposed to independently, which 

greatly reduces the number of available fMRI studies that investigated consolidation 

or offline periods. Thus, while here we compare online and offline scanning point 

findings, there are likely more neural correlates of offline motor learning scanning 

which did not survive the analysis due to a small sample size, or inconsistent regional 

activation. Therefore, we highlight a clear imbalance between scanning which 

investigates online correlates of motor learning, and scanning during offline, post-

learning periods.  

It must be noted that our task inclusion criteria did not specific task specificity. This 

choice was intentional so as to approach the question of online/offline motor learning 

activation in the general sense as opposed to specific to a given effector or conceptual 

process. In this way, our findings (taken in context with the Jackknife analysis) is more 

representative of general motor learning processes as they relate to online and offline 

scanning, as opposed to a single motor learning process such as procedural or 

adaptive learning. While this allows for a more general interpretation about neural 

activation as it relates to general motor learning, it also prevents more specific 
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predictions about motor learning as it relates to characteristics such as finger vs. arm 

use, explicit vs implicit knowledge, duration, task, and effort. These individual aspects 

almost certainly implicate different neural regions, and so individually (if sample size 

would allow) would produce different effects in a subsequent or future analysis.  

As a further limitation, due to sample size, we did not pursue a regression-based 

analysis which considered the effect of time on the offline motor learning activity. 

Indeed aspects such as the time of day, sleep, and duration of rest have been shown 

to influence consolidation processes (Ruffino et al., 2021; Truong et al., 2023), and 

thus in an analysis with more offline studies, this variable would require consideration 

to elaborate the effect of offline period following the initial learning.  

We therefore stress that as a constraint to this work, our findings only narrate the 

regional implication to online and offline processes in general, highlighting their 

differences. We also echo the findings by those such as Tung et al. (2013), who also 

stressed the importance of exercising caution when scanning after motor learning 

tasks, as placement time may prove critical to capture effects which may relate to 

offline processes or which may represent after-effects of recent motor learning.  

 

5. Conclusion 

Our findings identify unique and overlapping activation changes associated with 

online and offline motor learning correlates, supporting previous work and theories 

about regional contributions to motor learning. To our knowledge, this represents the 

first instance of a meta-analysis directly comparing online to offline motor learning, 

highlighting their respective overlapping and distinct signatures. While preliminary and 

restricted by study numbers, our findings replicate previous meta-analyses which 

investigated online motor learning, and find support for the theory of the cortico-striatal 
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network’s involvement in motor consolidation and offline processes. By comparing 

online and offline ALE maps via conjunction analyses, we also concluded that both 

SMA and somatosensory regions have roles in online and offline motor learning. 

Overall, we also find evidence for adaptive motor learning processes persisting into 

offline scanning, likely reflecting consolidatory processes which represented a 

reactivation of the same adaptative pathways during online learning. Our findings 

support future work which seeks to investigate overarching processes that govern 

motor learning, and identifies targets for stimulation and modulation at either online or 

offline learning stages while supporting current models of motor learning. We also 

highlight the need for further research into offline motor learning correlates, given the 

lack of literature in this area reflected by small study availability.  
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